Java: Data Science Made Easy

Java: Data Science Made Easy

Data collection, processing, analysis, and moreAbout This BookYour entry ticket to the world of data science with the stability and power of JavaExplore, analyse, and visualize your data effectively using easy-to-follow examplesA highly practical course covering a broad set of topics - from the basics of Machine Learning to Deep Learning and Big Data frameworks.Who This Book Is ForThis course is meant for Java developers who are comfortable developing applications in Java, and now want to enter the world of data science or wish to build intelligent applications. Aspiring data scientists with some understanding of the Java programming language will also find this book to be very helpful. If you are willing to build efficient data science applications and bring them in the enterprise environment without changing your existing Java stack, this book is for you! What You Will LearnUnderstand the key concepts of data scienceExplore the data science ecosystem available in JavaWork with the Java APIs and techniques used to perform efficient data analysisFind out how to approach different machine learning problems with JavaProcess unstructured information such as natural language text or images, and create your own searcLearn how to build deep neural networks with DeepLearning4jBuild data science applications that scale and process large amounts of dataDeploy data science models to production and evaluate their performanceIn DetailData science is concerned with extracting knowledge and insights from a wide variety of data sources to analyse patterns or predict future behaviour. It draws from a wide array of disciplines including statistics, computer science, mathematics, machine learning, and data mining. In this course, we cover the basic as well as advanced data science concepts and how they are implemented using the popular Java tools and libraries.The course starts with an introduction of data science, followed by the basic data science tasks of data collection, data cleaning, data analysis, and data visualization. This is followed by a discussion of statistical techniques and more advanced topics including machine learning, neural networks, and deep learning. You will examine the major categories of data analysis including text, visual, and audio data, followed by a discussion of resources that support parallel implementation. Throughout this course, the chapters will illustrate a challenging data science problem, and then go on to present a comprehensive, Java-based solution to tackle that problem. You will cover a wide range of topics – from classification and regression, to dimensionality reduction and clustering, deep learning and working with Big Data. Finally, you will see the different ways to deploy the model and evaluate it in production settings.By the end of this course, you will be up and running with various facets of data science using Java, in no time at all.This course contains premium content from two of our recently published popular titles:Java for Data ScienceMastering Java for Data ScienceStyle and approachThis course follows a tutorial approach, providing examples of each of the concepts covered. With a step-by-step instructional style, this book covers various facets of data science and will get you up and running quickly.

Author: Richard M. Reese

Do you want ot get/download the Java: Data Science Made Easy as Paperback or Kindle/pdf eBook?

Get the Book